物理历史上著名的悖论
作者:大山发布时间:2023-02-21浏览:466
薛定谔猫是薛定谔在1935年提出的关于量子力学解释的一个佯谬(也译为悖论)。猫被封在一个密室里,密室里有食物有毒药。
毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。
如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑。这个装置由薛定谔所设计,所以猫便叫做薛定谔猫。原子核的衰变是随机事件,物理学家所能精确知道的只是半衰期——衰变一半所需要的时间。如果一种放射性元素的半衰期是一天,则过一天,该元素就少了一半,再过一天,就少了剩下的一半。
但是,物理学家却无法知道,它在什么时候衰变,上午,还是下午。当然,物理学家知道它在上午或下午衰变的几率——也就是猫在上午或者下午死亡的几率。如果我们不揭开密室的盖子,根据我们在日常生活中的经验,可以认定,猫或者死,或者活,这是它的两种本征态。
但是,如果我们用薛定谔方程来描述薛定谔猫,则只能说,她处于一种活与死的叠加态。我们只有在揭开盖子的一瞬间,才能确切地知道此猫是死是活。但是,也就是在揭开盖子的一瞬间,描述猫的状态的波函数由叠加态立即坍塌到某一个本征态,即死态或者活态。
量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道此猫是死是活,她将永远到处于死与活的叠加态,即通常所说的半死不活。这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活?测不准原理:测不准原理也叫不确定原理,是海森伯在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理。海森伯在创立矩阵力学时,对形象化的图象采取否定态度。
但他在表述中仍然需要“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。
他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。可以把这些不确定性限制在最小的范围内,但不能等于零。
这就是海森伯对不确定性最初的思考。据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他。爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的。”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的。
实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。”海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义。”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因。
”海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。
经过一番推理计算,海森伯得出:△q△p=h/4π。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。
再加上德布罗意关系λ=h/p,海森伯得到△E△T<h,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。双方发生过激烈的争论。
玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心。”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们。在自然界中没有什么东西是这个数学推理方式不能描述的。”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系。
”玻尔更着重于从哲学上考虑问题。1927年玻尔作了《量子公设和原子理论的新进展》的演讲,提出著名的互补原理。他指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在。
对经典理论来说是互相排斥的不同性质,在量子理论中却成了互相补充的一些侧面。波粒二象性正是互补性的一个重要表现。测不准原理和其它量子力学结论也可从这。
相关推荐
- seem的用法有哪些
- 林肯车是美国总统林肯所创的品牌吗?
- 保时捷的四驱系统是什么
- 红人装这个平台可靠吗?
- 如何计算厨房吊顶费用?有哪几个部分要计算?
- 什么车是曜夜版
- 家庭净水器价格须知
- 西周时期周人主要通过什么制度来确立社会秩序
- 厨房的吊顶面积怎么算,要扣除橱柜面积吗(橱柜是到顶的,吊顶之前安装的)?
- 糠硫醇有毒吗
- 本田奥德赛火花塞多久换
- 苏州春兰空调维修电话是多少?
- 柬埔寨村民捕获全球最大淡水鱼,这条鱼有多大?
- 1000匹马力!全新悍马EV实车,3秒破百、还能“横着走”!
- 途观2017款参数配置
- at变速器车型有哪些
- 春兰空调厂家联系方式是什么?
- 娃娃鱼是国家几级保护动物?
- 世界上最大的淡水鱼,湄公河巨鲶体长近3米,最终成为盘中餐
- 悍马越野汽车价格多少?